

Eos Energy Storage

NAATBatt Workshop November 16th, 2018

Solar + Storage is Here

Levelized Cost of Energy of PV + S in the South West U.S.

<u>PV + S Requirements</u>

- 4+ hours of discharge
- Wide Thermal Operating Range (i.e., min HVAC)
- 100% Depth of Discharge
- Low Maintenance
- DC-coupled w/ Solar array
- Safe, no need for fire suppression
- High local content

Solar + storage is economic today... and a perfect fit application for the Eos battery

ZNYTH[®] Battery Overview

•

•

- Low cost bill of materials
- No supply-chain constraints/concerns
- Automated manufacturing

- No thermal runaway, wide temperature range Non-flammable, non-toxic electrolyte
 - Environmentally benign, fully recyclable

Chemistry "re-sets" after full discharge

- Key components (i.e., Titanium) last 30+ years Minimal capacity degradation w/ 100% DOD
- Inexpensive manufacturing lines can be set-up around the globe
 - ~\$8mm capex for GWh/yr capacity
 - Economies of scale at low volumes

Abundant low-cost materials

Titanium

Water

ZNYTH[®] Chemistry Overview

- Reversible zinc plating (reduction) and reversible halide oxidation with large aqueous electrolyte pool in a sealed bipolar battery
 - Zn and Zn²⁺ accumulate at the anode current collector (treated Ti sheet)
 - Ha and Ha⁻ accumulate at the cathode current collector (high surface area carbon felt)

Top of Charge

End of Discharge and Rest

Large surface area allows for high utilization Large electrolyte pool reduces shorting and need for expensive separators

Cathode Anode

Eos Aurora DC System

Monitoring / Analytics

- Battery Level Granularity
- SOC / SOH Estimation
- Warranty support

Optimization / Regulation

- Maximize kWh output
- Minimize wear / stress
- Interface w/ customer
 EMS controls

Protection / Maintenance

- Outdoor-rated, ready to install enclosure
 - Field serviceable
- Built-in protection

Plug and play, ready-to-install system with BMS providing optimization and protection

Highly Efficient, Local Manufacturing

Commodity Materials

— Comparison of MFG CapEx Required

1. From Tesla's Gigafactory Presentation; Estimate based on stated 30% reduction in current cost of battery pack

Eos' manufacturing is a fraction of the cost of conventional Li-ion

Deployments & Product Launch

Target Storage Applications & Value

	Solar + Storage	Reduce T&D Buildout	Demand Management	Microgrids / Rural Access	EV Charging
			and a state of the		
Reduce Cost					
Reduce Pollution					
Enable Access					

Storage will enable tremendous value and help to achieve policy goals

Eos DC-coupled Solar + Storage

- Eliminates redundant inverter cost
- Reduces conversion efficiency losses

10-MW Solar PV: 20-Year Average Energy Delivered

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	2.9	5.0	5.4	5.2	5.1	5.2	5.4	5.4	3.5	0.G	0.0	0.0	0.0	0.0	0.0	0.
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	4.3	5.6	6.0	5.9	5.8	5.6	5.8	5.2	4.3	2.1	0.0		arge	t Pe	riod	
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	5.7	6.8	6.7	6.6	6.6	6.5	6.6	6.6	5.7	3.3	0.4	0.0	0.0	0.0	0.0	0.
Apr	0.0	0.0	0.0	0.0	0.0	0.0	1.0	4.6	6.9	7.5	7.7	7.5	7.5	7.7	7.5	7.2	6.4	4.6	1.2	0.0	0.0	0.0	0.0	0.
May	0.0	0.0	0.0	0.0	0.0	0.0	2.7	6.1	7.3	7.8	7.8	7.7	7.8	8.0	7.6	7.6	7.0	5.6	2.3	0.1	0.0	0.0	0.0	0.
Jun	0.0	0.0	0.0	0.0	0.0	0.0	3.2	6.2	7.3	7.7	7.8	7.9	7.8	7.8	7.7	7.5	7.0	5.9	3.0	0.3	0.0	0.0	0.0	0.
Jul	0.0	0.0	0.0	0.0	0.0	0.0	2.2	5.2	6.4	6.8	7.3	7.5	7.4	7.6	7.5	7.4	6.5	5.1	2.4	0.2	0.0	0.0	0.0	0.
Aug	0.0	0.0	0.0	0.0	0.0	0.0	1.0	3.8	5.8	6.6	7.4	7.2	7.4	7.3	7.5	7.1	6.6	5.0	1.5	0.0	0.0	0.0	0.0	0.
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.4	3.9	6.2	6.8	6.9	7.0	6.8	6.9	6.7	6.2	5.5	3.0	0.3	0.0	0.0	0.0	0.0	0.
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.1	2.8	5.7	6.1	6.3	6.1	6.2	5.8	6.5	6.2	4.4	0.8	0.0	0.0	0.0	0.0	0.0	0.
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	4.8	5.9	5.5	5.2	5.1	5.2	5.2	5.0	2.9	0.2	0.0	0.0	0.0	0.0	0.0	0.
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	3.1	4.9	5.0	4.9	4.6	4.8	5.1	4.4	2.5	0.1	0.0	0.0	0.0	0.0	0.0	0.

10-MW PV+S with Four Hours of Storage: 20-Year Average Energy Delivered

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	2.9	5.0	5.3	5.2	5.0	5.1	5.4	5.4	3.5	0.6	0.0	0.0	0.0	0.0	0.0	0.0
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	4.3	5.6	6.0	5.9	5.8	5.6	5.8	5.2	4.3	2.1	0.0	Та	rget	Per	iod	0.0
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	5.7	6.8	6.7	6.6	6.6	6.5	6.6	6.6	5.7	3.3	O.A	0.0	0.0	0.0	0.0	0.0
Apr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	1.2	5.1	6.4	6.6	7.2	7.5	10.0	10.0	10.0	9.8	0.0	0.0	0.0	0.0	0.0
May	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	7.3	7.6	7.7	8.0	7.6	10.0	10.0	10.0	10.0	0.1	0.0	0.0	0.0	0.0
Jun	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.2	7.6	7.9	7.8	7.8	7.7	10.0	10.0	10.0	10.0	0.3	0.0	0.0	0.0	0.0
Jul	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	5.1	6.7	7.4	7.5	7.5	10.0	10.0	10.0	9.8	0.2	0.0	0.0	0.0	0.0
Aug	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	3.6	5.4	6.8	7.2	7.5	10.0	10.0	10.0	9.9	0.0	0.0	0.0	0.0	0.0
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	4.3	5.8	6.4	6.7	9.9	9.7	9.6	9.0	0.0	0.0	0.0	0.0	0.0
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	3.3	5.0	6.5	9.9	9.5	9.2	8.7	0.0	0.0	0.0	0.0	0.0
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	4.8	5.9	5.3	5.0	4.9	5.0	5.0	4.9	2.9	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	3.1	4.9	5.0	4.9	4.6	4.8	5.1	4.4	2.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0

Solar + Storage Economics

Storage Capex + Opex	PV + S LCOE
\$300/kWh	\$42/MWh
\$200/kWh	\$33/MWh
\$100/kWh	\$24/MWh

Assumes charging cost by adding incremental PV is \$0.011/KWh; 30 year life of asset

Technology Drives Industry Transformation

Telecom

Transportation

Energy

5TH Ave NYC, 1913 where is the horse?

The mobility and energy industries are evolving rapidly just like telecom

