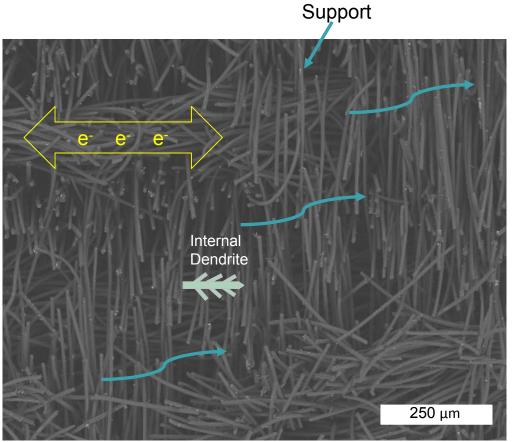


Zn-Air Batteries: Understanding Zn electrodes, New Air Electrodes

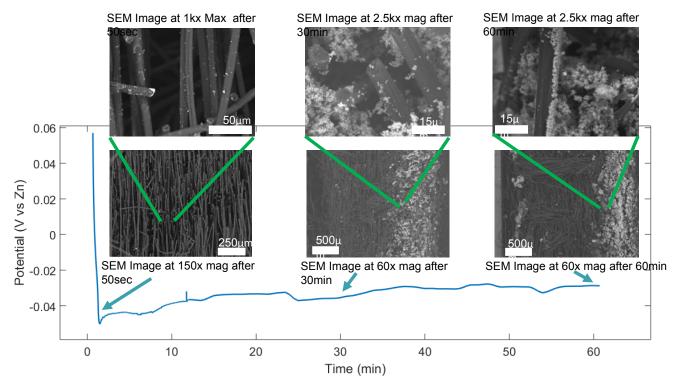

Tom Zawodzinski ORNL tzawodzi@utk.edu

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

A Flow-Assisted Zn Electrode

Graphite Flow **Zn Reference** Carbon Felt Plate Electrode Anion Exchange Membrana (CLAM) 4 M NaOH Sat. W/ ZnO

Permanent

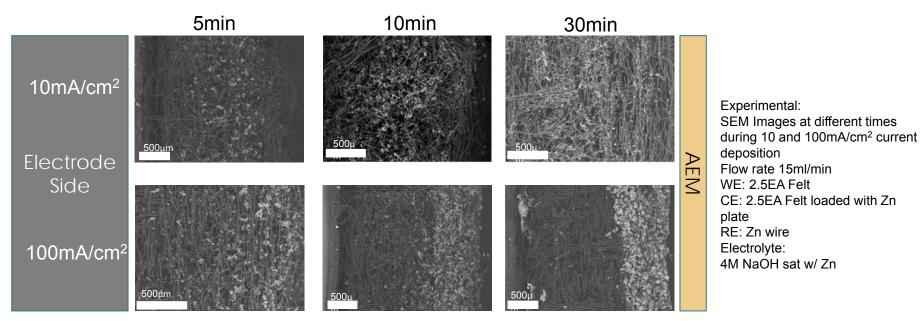

SEM image 2.5EA Carbon Felt at 150x Mag

CAK RIDGE

2

Zn Electrodes: Zn in carbon felt

Progression of Electrodeposition on Bare Felt 40mA/cm² Deposition Step on Bare Felt

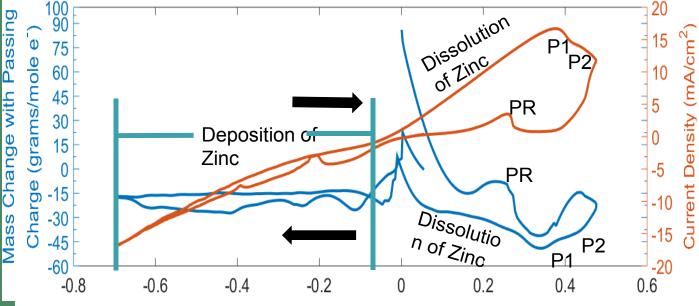

Experimental: 40mA/cm² deposition 10ml/min flow rate WE: 2.5EA Felt CE: 2.5EA Felt loaded with Zn plate RE: Zn wire Electrolyte: 4M NaOH sat w/ Zn

CAK RIDGE

3

Charging Zn Electrodes: Zn in carbon felt

Deposition Dispersion Changes with Current Density

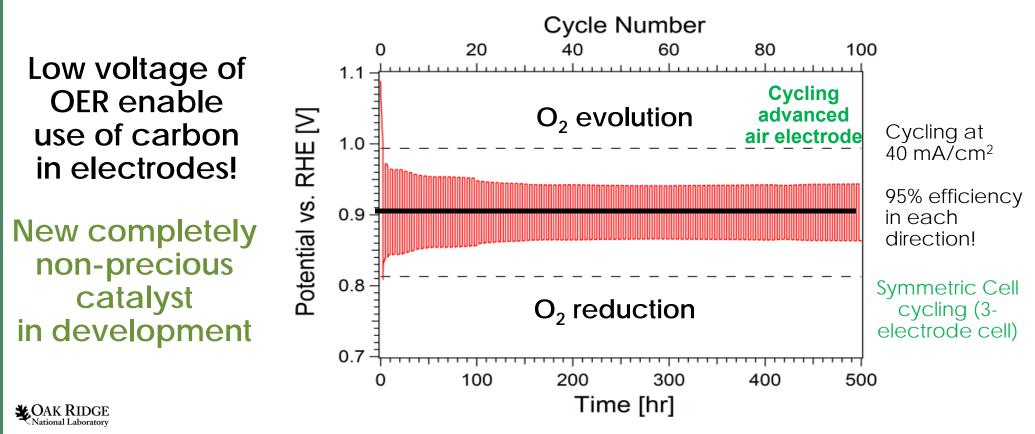

- · Higher current density: deposition localized near the membrane
- · Lower current density: deposition is evenly dispersed through felt
- Indicates an imbalance of the growth process at high current density

Possible New Diagnostic Approach for Flow Distribution

CAK RIDGE

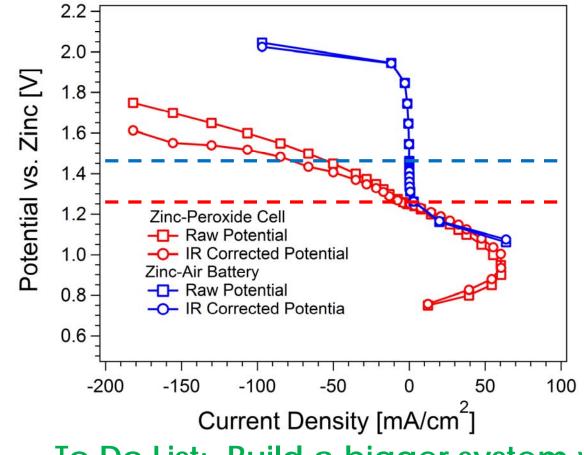
Discharging Zn Electrodes: Unraveling the Chemistry

EQCM: Correlating Mass Change with Current Allows for Analysis of Electrochemical Reaction taking place; ID's Native Oxide Film



Number of electrons involved	Zn	ZnO	Zn(OH) ⁻	Zn(OH) ₂	Zn(OH)⁻₃	Zn(OH) ²⁻ 4	Zn => ZnO	Zn => Zn(OH) ⁻	Zn=>Zn(OH) ₂
1	-65	-81	-82	-99	-116	-133	-16	-17	-34
K RIĐGE	-32.5	-40.5	-41	-49.5	-58	-66.5	-8	-8.5	-17

- Obtain molar mass changes of species at the interface
- Show passivation removal occurs as ZnO and Zn(OH)₂ converted to Zn
- Passivation process does not show signs of precipitation
- Species coming off of the surface correspond to a change in reaction product from Zincate to ZnO and Zn(OH)₂
- Suggests reaction changes based on local concentration of zincate at surface


Zn-Air System: positive oxygen electrode

Radical Efficiency Improvement Air electrode: one electrode can improve multiple battery types

6

Zn-Peroxide Comparison to Zn-Air Battery

Zn-air OCV~1.5 V Typical charging potential, efficiency 20 mA/cm² 1.95 V, 70% 50 mA/cm² 2 V, 67% 100 mA/cm² 2.05 V, 63% 150 mA/cm² Cannot sustain this current *Must use expensive catalysts, supports.*

Zn-Peroxide

OCV~1.3 V Typical charging potential 20 mA/cm² 1.32 V, 99% 50 mA/cm² 1.45V , 89% 100 mA/cm² 1.6 V , 75% 150 mA/cm² 1.7 V , 69% *NO expensive catalysts, supports.*

To Do List: Build a bigger system with improved mt.

CAK RIDGE

Acknowledgements

1. Thanks to Imre Gyuk and OE

- 2. Thanks to my team and collaborators at ORNL and UTK and the Bredesen Center.
 - a. Bredesen Ctr. Students: Asa Roy, Reed Wittman, Kun Lou
 - b. ORNL 'teammates': Jagjit Nanda, Frank Delnick, Gabe Veith
 - c. UTK: Gabriel Goenaga, Shane Foister, Matt Mench

