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Performance, Life, Cost Metrics For Grid Storage
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Cost

Cycle life

Reliability

Flexibility

Safety

$0.025 per kWhe = $100 per kWh
5000 cycles • 80% RTE



Aqueous Zn Battery
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Among the aqueous rechargeable batteries, Zn2+-based batteries exhibit a 
series of attributes for large-scale energy storage 

 Low-cost Zn metal anode with a high theoretical specific capacity of 819 
mAh g-1

 Replacement of the traditional alkaline electrolytes by mild neutral 
electrolytes, mitigating the environmental disruption and recycling costs 

 Low redox potential of Zn/Zn2+ (–0.76 V vs. standard hydrogen electrode) 
and two-electron transfer mechanism during cycling responsible for the 
high-energy density 
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Alkaline battery Zn/MnO2

 The primary Alkaline batteries (over 10 billion individual 
units produced worldwide) account for 
 80% of manufactured batteries (US)

 46% of all primary battery sales (Japan)

 68% (Switzerland), 60% (UK), and 47% (EU) of all battery sales including 
secondary types.

The half-reactions are: 
Zn(s) + 2OH−

(aq) → ZnO(s) + H2O(l) + 2e− 
[Eoxidation° = +1.28 V]

2MnO2(s) + H2O(l) + 2e− → Mn2O3(s) + 2OH−
(aq) 

[Ereduction° = +0.15 V]

Overall reaction: 
Zn(s) + 2MnO2(s) ⇌ ZnO(s) + Mn2O3(s) [e° = +1.43 V]
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Question/Motivation

Can we make alkaline battery rechargeable?

Attributes – low cost, safe, environmentally benign constituents, 
and relatively high energy density



• Stabilize MnO2/Electrolyte interface

• Suppress Mn dissolution

• Improve stability

• Improve Zn rechargeability

• Suppress Zn dendrite

• Improve cycling
0.1 M Mn2+additive

• 5000 cycles stable cycling • CE of Zn metal >99.5%, low over potential

2 M ZnSO4+0.1M MnSO4/H2O
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Disrobed
zone

(210) and  (020) planes from MnOOH

Cathode:  H2O ↔H+ + OH-

MnO2 + H+ ↔ MnOOH
1/2Zn2+ + OH- + 1/6ZnSO4 + x/6H2O ↔1/6ZnSO4[Zn(OH2)]3. xH2O

Anode:  1/2Zn ↔1/2 Zn2+ + e-

Overall:    MnO2+1/2Zn +x/6H2O+ 1/6ZnSO4 ↔ MnOOH+ 1/6ZnSO4[Zn(OH2)]3. xH2O

Mild Aqueous system-Zn-MnO2 reaction mechanisms

TEM Mn

ZnO

No Zn intercalation in α-MnO2

Nature Energy,  2016
Energy density： 175 Wh/kg
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Are Protons the Only Thing Active?

 Redox peaks observed for Zn2+

 No redox for Li+, Na+, K+

 H+ conversion may not be the only 
reaction mechanisms for all Zn-MnO2
systems.

Journal of Power Sources 196.18 (2011): 7854-7859.

Proposed reaction  mechanism in MnO2
1. Angew. Chem. 2012, 124, 957 –959
2. Chem. Commun., 2015, 51, 9265--9268
3. Chem. Mater. 2015, 27, 3609−3620
4. Nat. Energy, 2016,  1, 16039

1 M ZnSO4

Unpublished results

δ-MnO2
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Electrochemical Performance of in-situ 
Deposited Zn/MnO2

a) 1st deposition at 1.73 V, discharge at 1.40/1.26 V,  charge at 1.51/1.58 V, 
b) The capacity retention largely improved at 3C
c) 1.40 V: kinetic-favored reaction

1.26 V: kinetic-limited reaction
d) Large contribution of 1.26 V to the capacity leading to poor capacity retention at C/3

Two-plateaus
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Redox Reaction Mechanism in Zn/MnO2

 MnO2 peak shift by 
Zn2+/H+ insertion, 
appearance of MnOOH

 Appearance of Mn3O4, 
MnO, and 
ZnSO4∙3Zn(OH)2∙nH2O  

 Similar Zn2+ insertion + MnOOH
 suppressed Mn3O4, MnO, and 

ZnSO4∙3Zn(OH)2∙nH2O 

 After 100 cycles, appearance of 
ZnMn3O7∙mH2O

 11% Zn from ZnxMnO2 or 
ZnMn3O7∙mH2O, while all the rest 28% 
Zn from ZnSO4∙3Zn(OH)2∙nH2O

C/3 3C

C/3-1st 3C-100th3C-1st
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1) Pristine MnO2 electrode contains Mn4+, Mn3+, and Mn2 → [Mn4+/3+O6] and [Mn3+/2+O6]
2) MnO2 discharged to 1.3 V retain the Mn4+/3+/2+ mixture 

(the current density has a minor effect on the H+/Zn2+ intercalation reactions at ~ 1.40 V)
3) MnO2 fully discharged to 1V : Mn2+ peak was enhanced at C/3, while Mn3+ and Mn2+    increase 

moderately at 3C. 
• Complete reduction of Mn4+/Mn3+ to Mn2+ at C/3
• The kinetics-limited conversion reaction at 1.26V was largely suppressed at high rate.
• Hence a slight Mn valence change

Redox Reaction Mechanism in Zn/MnO2
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Redox Reaction Mechanism Summary

84MnO2  33Zn 10ZnSO4 100H2O
H  /Zn2 int ercalation  60MnOOH  24Zn0.125MnO2 10[ZnSO 4 3Zn(OH )2 4H2O]

8Zn0.125MnO2 16MnOOH  4Zn  ZnSO4  3H2O
H  /Zn2conversion  5Mn3O4  3MnO  2[ZnMn3O7 2H2O] ZnSO 4 3Zn(OH )2 4H 2O

i. initial H+/Zn2+ intercalation reactions  V, G=-92.067 eV

ii. further H+/Zn2+ conversion reactions ( V, G=-10.075 eV)

DFT Calculation:
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1) Small k°1.26V high Ea,1.26V & large η1.26V small achieved capacity of reactions at 1.26 V

2) High current (3C): suppressed conversion reactions at 1.26 V, causing a capacity reduction but 
improving capacity retention  

Kinetic Behavior of Zn/MnO2
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Optimizing Power Capability and Cycling 
Stability of Zn/MnO2

Nature Energy, 2016, 16039. Chemical Physics Letters, 2016, 650, 64-68. 
Nature Energy, 2016, 1, 16119. Electrochimica Acta, 2017, 229, 422-428. Electrochemistry Communications, 2016, 69, 6-10 Advanced Energy Materials, 2015, 5. Nano Energy, 2016, 25, 211-217 

Journal of Materials Chemistry A, 2017, 5, 8367-8375Electrochimica Acta, 2015, 182, 971-978. 

 Increasing C-rate or narrowing the voltage range (1.3-1.8 V) to restrain the irreversible conversion at 1.26 V
 175 mAh g-1 at 9C, 75 mAh g-1 at 30C after 1000 cycles
 1C, 1.3-1.8 V: a negligible capacity fading after 150 cycles
 Our cells display competitive electrochemical performances for stationery grid storage
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 Unravel concomitant intercalation and conversion reactions of
H+/Zn2+ occurring at 1.40 V and 1.26 V in the Zn/MnO2 system

 Attribute the rapid capacity fading to the rate-limiting conversion
reactions at 1.26 V

 Establish high performance of Zn/MnO2 cells, delivering high
energy and power density of 231 Wh kg-1 and 4 kW kg-1 at 9C
(3.096 A g-1) with negligible capacity fading after 1000 cycles

Summary 
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Reactions Examined by DFT
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Ex-situ SEM:
1) -MnO2 deposits: hydrangea-shape cluster, reverted after recharged to 1.8 V
2) Discharge to 1.3V (C/3 & 3C): well retained MnO2 cluster 
3) Discharge to 1.0 V (C/3): large flakes of ZnSO4∙3Zn(OH)2∙nH2O blocking the ion diffusion and 

disrupting the cathode structure
4) Discharge to 1.0 V (3C): Intergrowth between MnO2 nanosheets and ZnSO4∙3Zn(OH)2∙nH2O 

flakes

Redox Reaction Mechanism in Zn/MnO2



Performance, Life, Cost Metrics For PHEV
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Cost

Cycle life

Reliability

Energy/Power

Safety


