

U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND

New Aqueous Zn Chemistries

Kang Xu

Chunsheng Wang

Electrochemistry Branch, SEDD U. S. Army Research Laboratory

Department of Chemical and Biomolecular Engineering, University of Maryland

NAATBatt Zn Battery Workshop CUNY, NYC, November 16, 2018

- The earliest battery was not based on Cu/Fe chemistry
 - So-called "Babylon Battery"
- But instead on Zn chemistry
- Alessandro Volta (1799)

I. IAL USE ONLY//DRAFT//PRE-DECISIONAL

ZINC BEGETS LITHIUM

SECTION III. Lithium.

607. In the analysis of a mineral, called <u>petalite</u>. M. Arfwedson discovered about three per cent. of an alcaline substance, which was at first supposed to be soda; but, finding that it required for its neutralization a much larger quantity of acid than soda, he was led to doubt its identity with that alcali, and the further prosecution of his inquiries fully demonstrated that it possessed peculiar properties. The mineral called *tri*-

608. When lithia is submitted to the action of the Voltaic pile, it is decomposed with the same phænomena as potassa and soda; a brilliant white and highly combustible metallic substance is separated, which may be called *lithium*, the term *lithia* being applied to its oxide.

The properties of this metal have not hitherto been investigated, in consequence of the difficulty of procuring any quantity of its oxide.

> Brande (1821) Manual of Chemistry

Thomas Brande

ZINC: PROS AND CONS

Advantages

- Abundance in earth crust
 - Low cost
- Workable in aqueous
 - Safety, low toxicity
- High capacity (820 mAh/g)
- Low V (-0.762 V)
 - Potentially high Energy

Challenges

- Irreversibility
 - Low CE
- Consumption of both Zn and water
- Dendrite
- Alkaline condition promotes dendrite
- Inactive ZnO forms eventually

Zn anode reversibility

• Altering Zn-solvation sheath

Zn²⁺ Intercalation Mechanism

• Role of H₂O molecule

Zn²⁺ Intercalation Chemistry

• New cathode intercalation hosts

HIGH V AQUEOUS ELECTROLYTES

- Initially developed for Mg
 - Basic concept: drastically alter solvation sheath of cation
 - So that interphase changed
- Demonstrated for Li-ion chemistries
 - Stable vs. ambient
- Can support open cell configuration

ZINC SOLVATION SHEATH RESTRUCTURED

- High Li salt concentration (21 m LiTFSI) compete for H₂O solvation
 - Zn-solvation sheath dominated by anions
 - Formation of <u>Zn(OH)₆</u> (and hence <u>ZnO</u>) prevented
- TFSI is a super-acid anion
 - Hence Zn(TFSI)₂ is <u>nearly neutral</u>
 - <u>Dendrites</u> prevented
- <u>H₂O activity significantly reduced</u>
 - Water stability limits expanded

BENEFITS FROM THE NEW SOLVATION STRUCTURE

- A different deposition mechanism
 - High CE 99.8~99.9%; ZnO-free
 - Non-dendritic deposition
- Non-evaporating electrolyte: open-cell configuration possible

DEMO ON VARIOUS CHEMISTRIES

- A Hybrid Chemistry
 - Zn at anode; Li at cathode (LMO)
- Zn/O₂ Chemistry

2nd

10th

50th

100th

150th

200th

200

400

600

Capacity (mA h g⁻¹)

b

Voltage (V)

2.0

1.5

1.0

0.5

0.0

0

No catalyst was used at cathode

UNGLASSIFIED // FOR OFFICIAL USE UNLT // DRAFT // PRE-DECISIONAL

1.000

800

ZINC INTERCALATION MECHANISM

- Multi-valent cation experience much steeper desolvation barrier at electrolyte/electrode interface
- VOPO₄ selected as intercalation template
 - Zn^{2+} -intercalation kinetics studied as function of H₂O presence
 - H₂O at interface assists Zn²⁺-transport across interfaces
 - $H_2^{-}O$ in lattice dictates potential
 - H₂O equilibrium between bulk electrolyte, bulk electrode and interface

Wang et al, *Angew. Chem.* 2018

UNCLASSIFIED//FOR OFFICIAL USE ONLY//DRAFT//PRE-DECISIONAL

NEW INTERCALATION HOST FOR ZINC ION

- A ultra-fast/reversible Zn²⁺-intercalation host was synthesized
- High power density (8000 W/Kg)
- Comparable energy density to LIB (218 Wh/Kg)
 - 150 Wh/Kg at cell level
- Stable cycling (4000 cycles)
- Mechanism still under investigation

A COMPETITIVE CHEMISTRY WITH LIB

- The new chemistry provides an alternative to LIB
 - With comparable energy, much higher power and safety

Conclusion A new horizon of "uncharted water"

Fei Wang (UMD/ARL/MIT)

ACKNOWLEDGEMENT • DOE ARPA-E

Fei Wang

conrad.k.xu.civ@mail.mil kang_xu@hotmail.com

Chunsheng Wang UNCLASSIFIED//FOR OFFICIAL USE ONLY//DRAFT//PRE-DECISIONAL