

Electrochemical Analytic Diagnosis (eCAD) — A Battery Technology for Cell Qualification, Performance Qualification and Design Qualification

Boryann Liaw, Ph.D. FECS Energy Storage & Advanced Transportation Idaho National Laboratory

Boryann.liaw@inl.gov; +1-(208) 526-3238

NAATBatt 2020 Annual Meeting & Conference February 10-13, 2020, Pasadena, CA

Address the Gap in the Battery Technology

 Needs for system-based, integrated failure analysis (FA) + failure mode and effect analysis (FMEA) + diagnostic & prognostic tools

Idaho National Laboratory

Cell and Battery

Equipment,

Solution: Cross-Platform Analyses

- Materials (coin cells) Electrodes (pouch cells) Cell (performance evaluations) — Modules & packs (control and functionality)
- None-empirical, principle-based correlations
- Supply chain and value chain integration

Intelligent Materials-to-System Integration for Advanced Battery Technology

Table II-5. U.S. Advanced Battery Consortium Goals for Electric Vehicle Batteries

Primary Criterion	Long-term goals ⁶ (2005-2008)
Power Density, W/L	460
Specific Power, W/kg (80% DOD/30 sec)	300
Energy Density, Wh/L (C/3 discharge rate)	230
Specific Energy, Wh/kg (C/3 discharge rate)	150
Life, years	10
Cycle life (cycles)	1000 (80% DOD) 1,600 (50% DOD) 2670 (30% DOD)
Power and capacity degradation ⁷ (% of rated spec)	20%
Ultimate price ⁸ , \$/kWh (10,000 units @ 40 kWh)	<\$150 (desired to 75)
Operating environment	-30C to 65 C
Recharge time	< 6 hours
Continuous discharge in 1 hour (no failure)	75% (of rated energy capacity)
Secondary Criteria	Long-term goals (2005-2008)
Efficiency (C/3 discharge and C/6 charge ⁹)	80%
Self-discharge	<20% in 12 days
Maintenance	No maintenance. Service by qualified personnel only.
Thermal loss	Covered by self-discharge
Abuse resistance	Tolerant. Minimized by on-board controls.
Specified by contractor: Packaging constraints, Environmental impact, Safety, Recyclability, Reliability, Overcharge/over-discharge tolerance	

60

40 20

0.86

(universal

Pseudo-OCV-SOC

Bad, Cycle 50, C/3

Ugly, Cycle 50, C/3

od, Cycle 50, C/3

1.00

Novel Electrochemical Analytic Diagnosis (eCAD)

x in Li_xNi_{0.6}Mn_{0.2}Co_{0.2}O₂

Failure analysis (FA) and Failure mode and effect analysis (FMEA)

Ualy Cell 10

Cycle #

5, 7, 9,

Bad Cell

2, 4, 6, 13

Bad Cell 3

180

170

160

150

25

Specific capacity (mAh g⁻¹)

x in Li_xNi_{0.6}Mn_{0.2}Co_{0.2}O₂

pacity (mAh/g)

Ca

Specific

200 -

175 -

150

125

100

75

Cycle 25

10

20

Cell 3 bad

Cell 8 ual

50

60

Cycle 45

Cycle 50

30

Failure Diagnostics to Identify Cell Design & Performance Gaps

- Quantify capacity fade attributes between Li and NMC electrodes, cell-to-cell, cycle-by-cycle, in a complete life cycle analysis to help identify gaps in materials, electrodes, and cell level for specific energy and cycle life improvements.
- Integrate three keystone efforts into a consistent platform for cell qualification and performance quantification

