

Another look at Zinc-Air NAATBatt 2020, Pasadena, CA

Dr Stephen R Clarke, CEO, QuanVerge Inc

Prof. Frank Walsh, Southampton University, UK

Web: <u>www.quanverge.com</u> E-mail: <u>steve@quanverge.com</u> Mob: 925 639 9399

Metal-Air Batteries (MABs) offer tantalizing potential....

QV

....because half of a MAB's chemistry is O_2 from air

Simplified Generic Layout

But which metal to use?

Let's start with alkali and alkaline earth metals

Pros:

Highest potential for specific energy density and voltage

Cons:

- Metals react violently with air and/or moisture
- Cannot use aqueous electrolytes
- Need expensive, hazardous and potentially toxic fluorine-based electrolytes
- More complex, more challenging production needs
- Potentially difficult, hazardous and/or uneconomic to recycle
- Do we want to risk a another PFOS fiasco?

Theoretical Specific Energy Density (Wh/kg)

 $0.00 \ 1000.02000.03000.04000.05000.06000.00$

So why not Zinc or Iron?

0.00 1000.00000.00000.0000.00000.00000.00

Cons:

- Lower potential for energy density and voltage
- Development fatigue "We tried that but..."

Pros:

- Still potentially 4x Li-ion at system level
- These metals do not spontaneously combust
- Safe, non-toxic, aqueous electrolytes
- Potential for very low-cost product and production equipment
- Recycle friendly chemistry and packaging
- Likely to be very tolerant of state of charge (SOC)

We believe Zn-Air is worth another look

• Potential Benefits:

- >400Wh/kg at the system level with no thermal management and minimal BMS
- Very low cost <\$70/kWh at the system level
- Tolerant of p-SOC operation (partial state of charge)
- Thermal runaway unlikely
- No toxic or hazardous components easily recycled
- Challenges
 - Development fatigue lots and lots of failed attempts
- But we know what the challenges are
 - $^{\circ}$ GDE failures and CO₂ adsorption
 - Poor kinetics (power delivery and charge rate) see above

1st Challenge is the Gas Diffusion Electrode (GDE)

- GDEs need to support good reaction kinetics in a complex 3 phase (gas, liquid, solid) interface.
 - Good porosity for gas transport
 - High specific surface area for good kinetics
 - Low surface tension/hydrophilic for liquid wetting and transport
 - Fine, well distributed catalyst for good kinetics
 - Good electron conductor for efficiency
- Power delivery, charge rate and cycle life are largely determined by the GDE

GDE

MAB GDEs need to cycle and evolve O_2

- GDEs are the heart of a MAB but these were largely copied directly from PEM fuel cells
- MAB operation is fundamentally different:
 - They cycle between charge and discharge
 - $^{\rm o}$ They evolve $\rm O_2$ at the GDE during charge
 - O_2 evolution starts with O_1 a highly reactive free radical which consumes any carbon catalyst support (even Graphene) making CO_2
 - Pt catalyst lost as carbon support erodes
- Carbon based GDE performance and cycle life has been poor and MAB developers were slow to recognize the issue.

GDE

2nd Challenge – alkaline (KOH) electrolytes

Zn MAB's used alkaline electrolytes, which readily absorb CO_2 from air. This precipitates and consumes the electrolyte as carbonate

- A CO₂ inhibiting membrane/separator is required
- Limits transport kinetics
- Compromises power density
- Adds cost & complexity

Zinc forms dendrites when plated (charging) from alkaline solution at anything more than a minimal charge rate. This generates shorts and limits cycle life

- Also be reduced with a separator or "leverers"
- But this further limits transport kinetics and charging rate

Priorities for success:

- 1. High cycle life GDE:
 - Stable non-corroding catalyst support to support oxygen evolution on charge
 - Excellent electron conductor
 - Excellent kinetics high specific surface area
- 2. Alternative electrolyte
 - ° CO₂ rejecting, membrane free operation
 - Dendrite limiting
 - Non-toxic
 - Excellent kinetics
 - High metal concentration

Ti sub-oxide based high cycle life GDE

Magneli Phase Ti-sub oxides (Ebonextm)

Titanium sub-oxides of the general formula Ti_nO_{2n-1} where n = 4-7

• i.e. Ti₄O₇, Ti₅O₉, Ti₆O₁₁, Ti₇O₁₃

Characteristic graphite-like crystalline structure (Magneli Phase) with established and characteristic X-ray diffraction spectra

• Not simply doped Titania or casual mixtures of TiOx

Produced from TiO₂ which is an abundant and widely available commercial commodity

Combines high levels of electron conductivity with exceptional catalyst enhancement, corrosion resistance and stability

Compound	x in TiO _x	Structure	X-ray density
TiO ₂	2	Rutile	4.25
-		Anatase	3.89
Ti10 O19	1.9		
Ti ₉ O ₁₇	1.89	Triclinic	3.75
Ti ₈ O ₁₅	1.875	Triclinic	3.84
Ti, O ₁₃	1.857	Triclinic	3.9
Ti ₆ O ₁₁	1.833	Triclinic	4.0
Ti, O,	1.8	Triclinic	4.31
Ti ₄ O ₇	1.75	Triclinic	4.32
γ Ti ₃ O ₅	1.67	Monoclinic	4.35
		Monoclinic	4.24
		Monoclinic	4.11
Ti ₂ O ₃	1.5	Tetragonal	4.585
TiO	1.0	Hexagonal	5.69
		Cubic	5.82
		Monoclinic	5.89
Ti ₂ O	0.5	Hexagonal	5.0
Ti	0	Hexagonal	4.5

"Magneli Phase" crystal structure

Ebonex's structure is based on but distinguishable from rutile TiO₂

- Crystals are built up of TiO₂ octahedra blocks which share edges and corners to form a shear plane
- In Ti_nO_(2n-1), every nth layer has an oxygen deficiency, which leads to shear planes in the crystal structure.
- These shear planes occur at n spacing in layers of inert TiO₂ octahedra and provide pathways for electron transport – delivering true metallic conductivity

Ebonextm contains the preferred Magneli Phases ($Ti_4 Ti_5$ and Ti_6)

True electron conductor up to 4 times higher conductivity than graphite

Exceptional corrosion resistance in aggressive acidic and basic solution

- Exceptionally robust in HF, BF₄, PF₆, HCI, KOH and other highly oxidizing environments
- Exceptionally stable under electrically polarized conditions
- Provides the basis for very high-performance anodes and cathodes

Delivers key advantages in electrochemistry....

Wide over-potential window that suppresses $\rm O_2$ and $\rm H_2$ evolution in water

Important benefit for batteries, reducing electrolyte decomposition and drying

Exceptional catalyst retention and catalyst enhancement

• Longer life, less catalyst required, broader range of catalysts

....and many complementary properties

Credit: Helmholtz Zentrum, Berlin

QuanVerge microporous Ebonex

Very hydrophilic - Promotes wetting, electrolyte transport and catalytic activity

Very broad range of morphology, porosity and specific surface areas

Non-toxic - equivalent to TiO_2

High microwave absorption

Lubricious - similar to graphite but with higher wear resistance

Strong published support for this approach

- 1. Li X. et. al. "Magneli phase Ti4O7 electrode for oxygen reduction and its implication for zinc-air batteries". 2010 Institute for Fuel Cell Innovation, National Research Council of Canada. Vancouver
- 2. Ponovic P. et al. "Co-Magneli phases electrocatalysts for hydrogen and oxygen evolution" 2010. International Journal of Hydrogen Energy Center for Fuel Cell Research University of Delaware
- 3. Palanichamy K. et. al. "Magneli phase TinO(2n-1) as corrosion resistant PEM fuel cell catalyst support" 2012 Journal of Solid State Electrochemistrty
- 4. Kundu D. "A highly active nanostructured metallic oxide cathode for aprotic LiO2 batteries" 2014 Energy and Science, RSC Publications
- 5. Borisov G R, et. al. "A novel non-carbon gas diffusion layer for PEM water electrolysis anodes" 2015 Bulgarian Academy of Sciences
- 6. "New Ti4O7 microporous electrode for Li Sulfur" 2017. Helmholtz Zentrum, Berlin, Humboldt University, Potsdam University
- 7. Mei S., et. al. "Porous Ti4O7 Particles with Interconnected-Pores Structure as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries" 2017 Advanced Functional Materials doi: 10.1002/adfm.201701176

Methanesulfonic Acid based, CO_2 rejecting electrolyte

Methanesulfonic Acid (MSA)

Properties:

- Formula: CH_3SO_3H BP: 167°C Density: 1.48 g/cm³
- EPA "Green Circle" classification
- Preferred alternative to H₂SO₄ and HCI as a metal plating acid
- Used to plate lead/tin in electronics manufacturing
- Used to extract zinc from Jarosite smelter waste
- Established commercially in electronics, plating and re-cycling

Researched and tested in zinc, lead and vanadium flow-battery systems

Established advantages

- High solubility for Zn, Sn, Pb and other metals
- Low solubility for aluminum and stainless steel
- Rejects CO₂ adsorption
- Excellent reaction kinetics supported
 >5,000A/m2 on discharge and charge
- Zn does not form dendrites in MSA even at >5,000A/m2

Diagram of the Divided Zinc-Cerium Flow Battery

Demonstrated > 10 years and thousands of cycles in Zn/Ce and other flow batteries

Summary - A different approach to Zn-Air

Conventional

- Carbon based GDE
- Alkaline electrolyte

Limitations & Failure Modes

- Carbon GDE gradually consumed by evolved O₂ on charging. Needs additional catalyst (Pt)
- Alkaline electrolyte absorbs CO₂ and fails
- Membrane limits CO₂ but adds cost and compromises power density
- Zn can form dendrites on charge, which short the battery

Alternative

- Novel non-corroding GDE
- Methane Sulfonic Acid (MSA) electrolyte

Advantages

- Non-carbon GDE extends cycle life and reduces catalyst loading. Opens options for non PMG catalysts
- CO₂ rejected by acidic electrolyte CO₂ membrane eliminated, improving cost and kinetics
- Organic acid inhibits Zn dendrites

Targets: >400Wh/kg system level >\$70/kWh system level