NAATBaat Annual Meeting, February 11th, 2020

Report of Chief Science Officer

Trends for the Future of High Energy Density Battery Technology

> M. Stanley Whittingham Binghamton University (SUNY)

Peterbilt Trucks

Bermuda Rental Car

UK Ambassador Residence, Stockholm

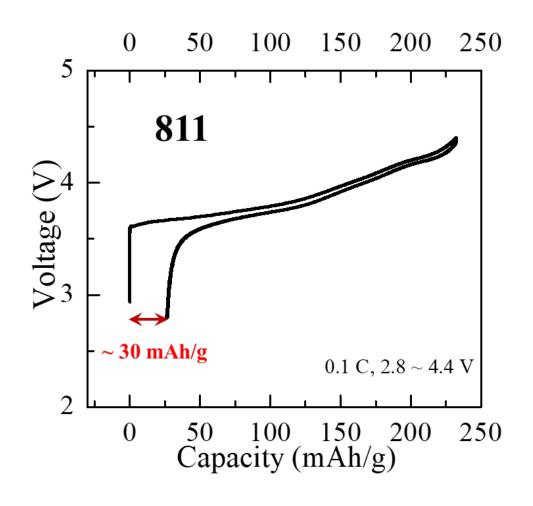
The Progress of Li-Ion Intercalation Battery Science

Cathode Trends:

High Ni NMC will dominate for EVs Trend to move higher Ni than 622 Challenges 1st cycle loss Meatballs vs separate crystals (Dahn) Status of Battery 500 Protocols Consortia Arising around the world

Science Manufacturing

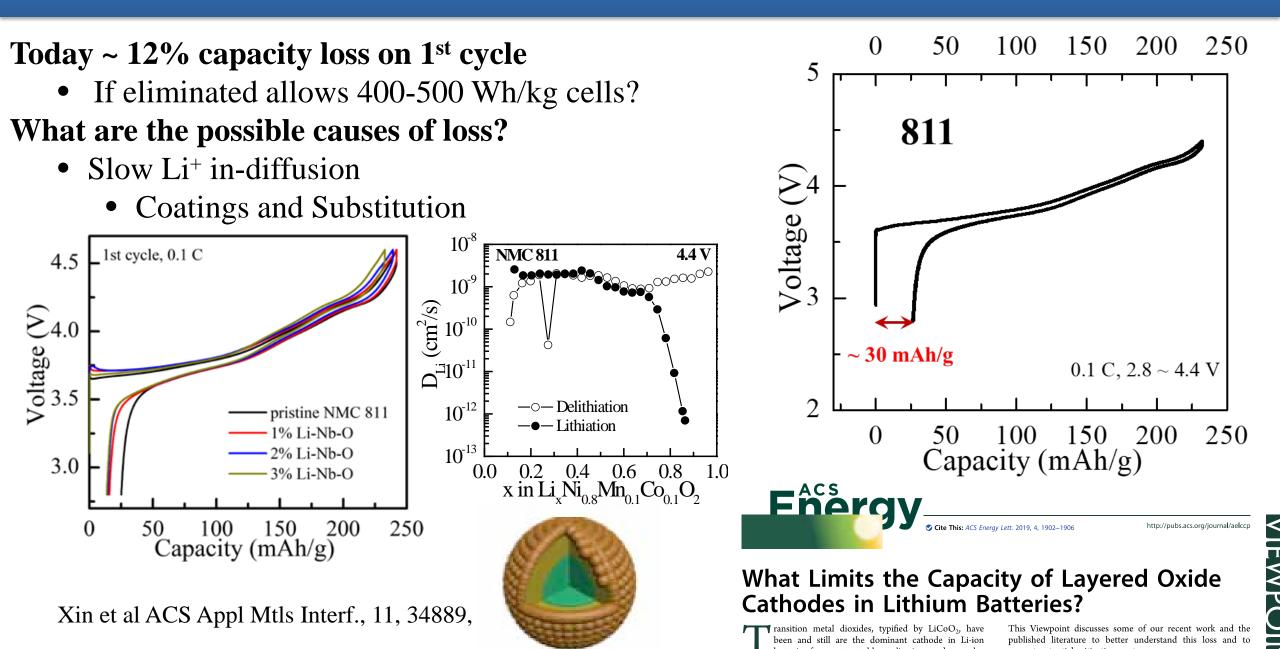
ENERGY Energy Efficiency & Renewable Energy

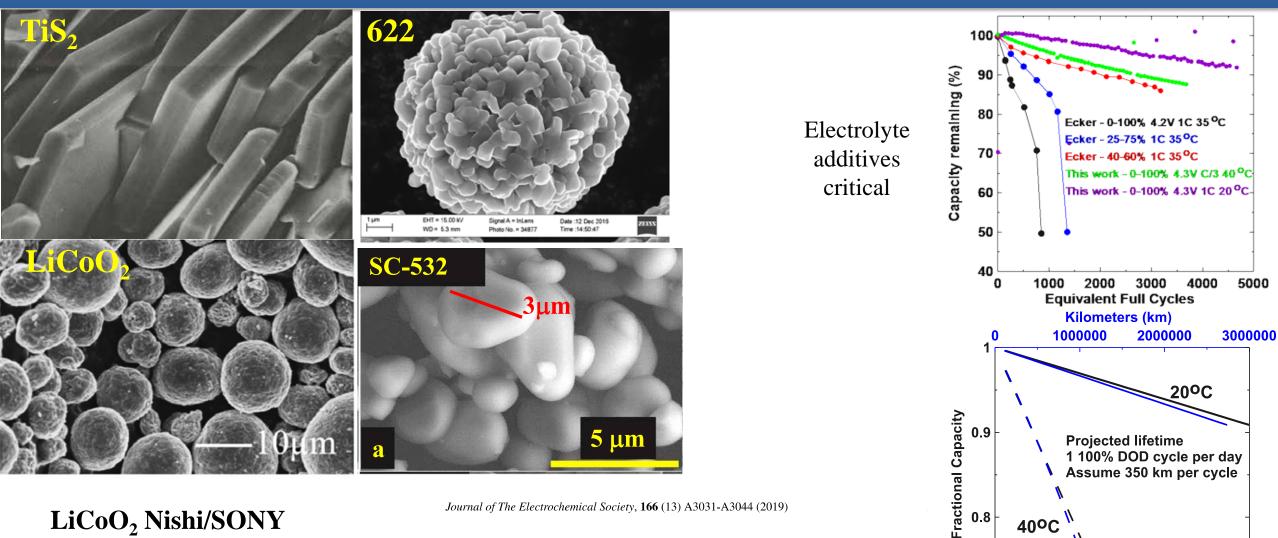


The 1st Cycle Loss of High Ni NMCA Intercalation Batteries

Today ~ 12% capacity loss on 1^{st} cycle

- If eliminated allows:
 - 400-500 Wh/kg cells
 - 1000 Wh/l





ENERGY Energy Efficiency & Renewable Energy

How to get even Higher Energy Density: Use all the Material!

"Meatballs" or Separate Crystals for High Ni NMCA Intercalation Batteries

Journal of The Electrochemical Society, 166 (13) A3031-A3044 (2019)

0.8

0.7

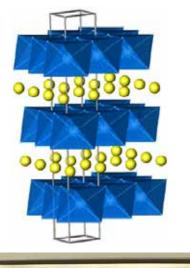
40°C

5

10

Years

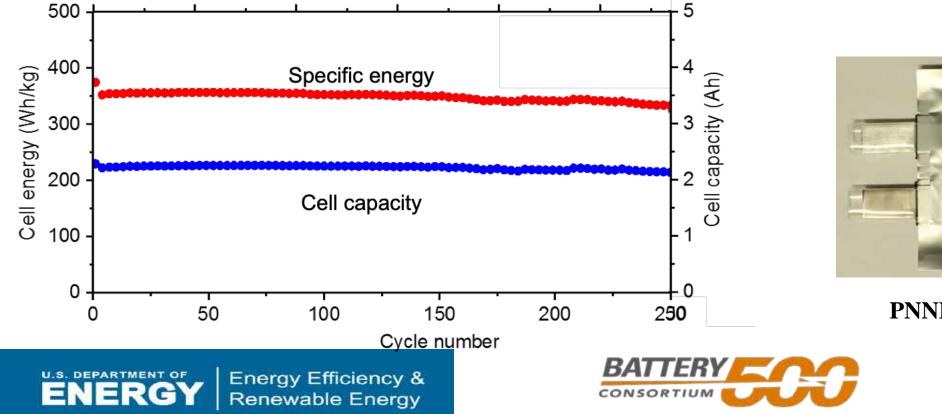
20

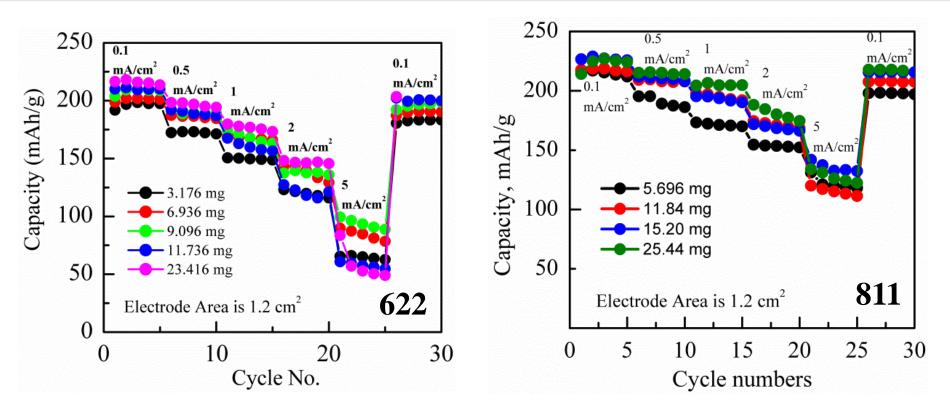

15

25

LiCoO₂ Nishi/SONY 20 mm particles (Figure – Dahn 2007)

Battery500 Now Achieved >350 Wh/kg with NMC 622


- LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂ was 2019 baseline for the consortium
 - X-ray characterization normal
 - Electrochemistry good
 - Achieved 350 Wh/kg goal



PNNL/INL Unpublished results

R,D&E Now Emphasizing NMC 811 over 622 as Tomorrow's Choice (How low can the Co go?)

- The cells cycled at different current densities, mA/cm², from 2.5 to 4.6 V
- 622 show dependency of loading on electrochemical performance at high rates
- 811 has better rate capability compared to 622, less thermally stable and more air sensitive

ENERGY | Energy Efficiency & Renewable Energy

Protocols and Pathways for Future Intercalation Batteries

Journal of The Electrochemical Society, 166 (16) A4141-A4149 (2019)

Good Practices for Rechargeable Lithium Metal Batteries

Bingbin Wu,^{1,=} Yang Yang,^{1,=} Dianying Liu,¹ Chaojiang Niu,¹ Mark Gross,¹ Lorraine Seymour,^{1,*} Hongkyung Lee,¹ Phung M. L. Le,^{1,2} Thanh D. Vo,^{1,2} Zhiqun Daniel Deng,¹ Eric J. Dufek, ^{3,*} M. Stanley Whittingham,^{4,**} Jun Liu,^{1,**} and Jie Xiao ^{1,5,*,z}

PERSPECTIVE https://doi.org/10.1038/s41560-019-0338-x

NATURE ENERGY | VOL 4 | MARCH 2019 | 180-186 | **Pathways for practical high-energy long-cycling lithium metal batteries**

Jun Liu[®]^{1*}, Zhenan Bao[®]², Yi Cui[®]², Eric J. Dufek[®]³, John B. Goodenough[®]⁴, Peter Khalifah[®]⁵, Qiuyan Li[®]¹, Bor Yann Liaw[®]³, Ping Liu[®]⁶, Arumugam Manthiram[®]⁴, Y. Shirley Meng[®]⁶, Venkat R. Subramanian^{1,7}, Michael F. Toney[®]⁸, Vilayanur V. Viswanathan¹, M. Stanley Whittingham[®]⁹, Jie Xiao¹, Wu Xu[®]¹, Jihui Yang[®]⁷, Xiao-Qing Yang⁵ and Ji-Guang Zhang[®]¹

ENERGY | Energy Efficiency & Renewable Energy

What are the battery systems of the future? – No change from 2019

ü Lithium intercalation systems will dominate for next 5-10 years

- ü NMCA likely to be dominant
- ü LiFePO₄/LiMnPO₄ /LiVOPO₄ systems still have key markets
- ü Need safe and stable electrolytes
- **ü** Na cells (1-2 Na) may also be viable for fixed storage, but safety issues (mp 100°C)
- X Magnesium not a technical option
 - X No evidence that Mg can transfer more than 1 electron/TM (=1/2 Mg); lower voltage than Li
 - X Mg readily grows dendrites
 - ü "Anything Mg can do, Li can do better"
- **ü** Calcium more attractive than magnesium
- **ü** Lithium sulfur has the highest ED but is a real bear
- X Lithium air not viable technically and no ED incentive
- **ü** Zinc systems have renewed interest for low ED applications

