

IMPACT OF FAST CHARGE ON LITHIUM-ION CELL DESIGN

DANIEL ABRAHAM

NAATBatt 2020, Pasadena, CA

February 12, 2020

Acknowledgments DOE-EERE Marco Rodrigues Ilya Shkrob John Okasinski Andrew Chuang Pierre Yao Argonne colleagues

LITHIUM-ION BATTERY RESEARCH AT ARGONNE

Key Challenges for Transportation

Lower Battery Cost

Lower Co content in oxide electrode
 while maintaining structural stability

Increase Energy Density

- Operate cells a higher voltages
- Use Si in the negative electrode
 Improve Safety
- Use solid (ceramic, etc.) electrolytes
 Improve Low T (<0 °C) performance
 - Modify electrolyte compositions

https://access.anl.gov/

Enable fast-charge while maintaining cell performance Could we lower battery charging time from 1 h to 10 minutes?

Concerns

Oxide particle fracture Crystal structure changes

Concerns

Lithium plating on particles Graphite damage/disorder

At what rate does the performance degradation set in?

Baseline Cell Chemistry FIB-SEM cross-sections of particles

Baseline Electrolyte

1.2 M LiPF₆ in EC/EMC (3:7 w/w)

 $NCM523 = Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$

Positive Electrode

- 90 wt% NCM523 Oxide
- 5 wt% C45 carbon
- 5 wt% PVdF binder
- 34 110 μm thk coating

Negative Electrode

- 92 wt% A12 Graphite
- 2 wt% C45 carbon
- 6 wt% PVdF binder
- 44 120 μm thk coating

Electrodes fabricated at Argonne's CAMP facility

REFERENCE ELECTRODE TECHNIQUE

- Cycling conditions under which Li-plating could occur
- Electrode impedance changes that result from fast charge
- Effect of electrolytes

Rodrigues et al. J. Electrochem. Soc., 2019, 166, A996 *Shkrob et al.* J. Electrochem. Soc., 2019, 166, A3305 *Shkrob et al.* J. Electrochem. Soc., 2019, 166, A4168

Reference Electrode cells & typical data

Using a *reference electrode* allows the measurement of electrode potentials along with the cell voltage

Cell voltage & capacity at various cycling rates 3.0 – 4.39 V, 30 °C

As Charge Rate Increases

Voltage Polarization Increases

 For example at 45 mAh/g, cell voltages are 3.62 V and 4.09 V at C/25 and 6C rates, a difference of 470 mV

Charge capacity decreases

 For example, charge capacities are 180 and 97 mAh/g at C/25 and 6C rates a difference of 83 mAh/g

Electrode potentials at various cycling rates 3.0 – 4.39 V, 30 °C

- Li-plating condition is met at rates ≥ 3C
- Of the 470 mV polarization at 45 mAh/g, 360 mV is from the oxide electrode and 110 mV is from the graphite electrode
- Positive electrode polarization causes the cell to reach the UCV at progressively lower capacities

Impedance measurements before and after a series of fast charge cycles (up to 6C)

Li plating does not affect the anode impedance, but high charging currents can increase the cathode impedance

STUDYING ELECTRODE HETEROGENEITY

- Lithium concentration gradients are generated along the electrode cross-section during fast charging
- Persistence of these concentration gradients can result in nonuniform aging of the electrodes, making it difficult to predict cell life

Yao et al. Energy Environ. Sci. 2019,12, 656 Rodrigues et al. Appl. Energy Mater. 2019, 2, 873

Radiography, Tomography & Energy Dispersive X-ray Diffraction

Examining electrode cross-sections using operando energy dispersive X-ray diffraction at 1C rate

(Near separator)

(Near current collector)

Average Li content of various layers during 1C cycling

Design considerations to enable fast charging

Cycling protocols

High temperature charging speeds up Li⁺ ion diffusion in electrode Pulsed/intermittent charging allows time for Li⁺ ion diffusion into graphite

Electrolyte design

Maximize Li⁺ ion conductivity to minimize concentration gradients Minimize SEI impedance for rapid Li⁺ ion diffusion into graphite

Particle design

Optimize graphite morphology/size for rapid Li⁺ ion diffusion Optimize other cell components (oxide, separator)

Electrode design

Align pores to minimize tortuosity & speed up Li⁺ ion diffusion Porosity gradients (more porous near separator)

IMPACT OF FAST CHARGE ON LITHIUM-ION CELL DESIGN

DANIEL ABRAHAM

NAATBatt 2020, Pasadena, CA

February 12, 2020

Acknowledgments DOE-EERE Marco Rodrigues Ilya Shkrob John Okasinski Andrew Chuang Pierre Yao Argonne colleagues