

Advanced Solutions Group 4880 Venture Drive Ann Arbor, MI 48108

www.navitassys.com

Issues and Challenges of Becoming a Domestic Source for Military Batteries

NAATBatt 2020 Annual Conference • Pasadena, CA February 11, 2020

Alan ElShafei Chairman/Founder, Navitas Systems • alane@navitassys.com

History: Wanxiang Wants A123 Acquisition

June 2012

ENERGY NEWS

I9 COMMENTS

A123's China Deal Is the Latest Energy Controversy

Some observers are alarmed that the federally backed battery maker A123 Systems could soon be owned by the Chinese. But did the company have a choice?

By Martin LaMonica on August 13,

The cash-strapped battery maker, which last month said it had only enough money to last through October, reached an agreement with the auto parts division of Wanxiang that would give the Chinese company a controlling interest. The deal, which the companies hope to close by the end of the year, is structured to provide A123 Systems with much-needed cash for operations in the months ahead and then give Wanxiang the ability to buy warrants that would be converted into stock. If the Chinese and U.S. governments approve the deal, it would give Wanxiang about 80 percent ownership for a \$450 million investment.

December 07, 2012, 09:15 pm

Review of A123 sale critical to national interest

On the military front, A123 Systems' contracts with the Defense Department provide automotive batteries and durable energy supplies for deployed U.S. combat troops. For example, A123 Systems' equipment and technology are used in unmanned aerial and underwater vehicles and portable energy grid systems at forward operating bases. Already a group of former senior U.S. military leaders and industry experts, the Strategic Materials Advisory Council, has expressed grave concerns about the security risks of an acquisition by Wanxiang. As the United States rebalances its global force posture and increases its focus on the Asia Pacific region, it would be the height of folly to allow a Chinese company – and potentially the Chinese military – to gain insight into, and access to, critical U.S.energy-related capabilities.

denverpost.com

Navitas Systems acquires A123's government, research side

Melissa Burden / The Detroit News

POSTED: 01/29/2013 02:54:07 PM MST

Ann Arbor - Navitas Systems LLC plans to bring on board about 40 A123 Systems Inc. employees in southeast Michigan, following its \$2.3 million acquisition of the government and research side of the battery maker's business.

Woodbridge, Ill.-based Navitas Systems' was the winning bidder in a December U.S. Bankruptcy Court auction for the government side of A123 Systems' operations. Wanxiang America Corp., a Chinese company, won the majority of A123 Systems' business, including its automotive lithium-ion battery business.

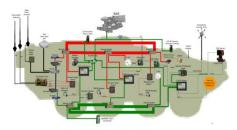
On Tuesday, the Obama administration approved the A123 Systems' sale to Wanxiang, and the companies closed their deals late Tuesday.

Our Passion: Make Tough Batteries for Critical Niches

Navitas is comprised of three business lines.

Navitas Capabilities

	Cell and Advanced Chemistry R&D and Processing	Analytical and Testing	Custom Cell Development & Manufacturing	Battery Management Systems (BMS)	System Design and Assembly	Lithium Battery Solutions
Capability						
Scope	 Wet lab Controlled atmosphere tube furnaces for synthesis Custom anode, cathode, and electrolyte development Battery materials and concepts evaluation Advanced Chemical processing 	 500+ MACCOR test channels Environmental control -70 to +200°C Electrochemical Impedance Spectro-scopy Scanning Electron Microscope with elemental mapping and inert gas sample transfer device Analytical chemistry instrumentation Cell deconstruction analysis 	 Prismatic cells 2x3 to 20x20 cm form factors In house slot-die coating 650 sq. ft. dry prototyping room 10k sq. ft. dry room for midscale production Various Li-ion chemistries developed Extreme high power and high energy density chemistries available; 100-600 Wh/L 	 Custom PCBA and wiring harness design and assembly In-house SMT line for quick turn and low volume prototyping Customized configurable software developed in house Box builds 	 Cell form factor and chemistry agnostic >1kWh solutions System mechanical and electrical design Custom power electronics Finite element analysis Thermal modeling Prototype and low-volume assembly in house 	 Custom battery development, prototyping, and manufacturing 24V NATO 6T Battery Multi-kWh motive application batteries PowerForce™ Idle Reduction Battery Frontierion™ Photovoltaic Interface + Energy Storage Mission-critical UPS Systems



- East Penn is largest privately-held lead battery company in North America
 - Leadership share in forklift and automotive batteries
- Navitas Systems is a leader in specialized lithium
 - Advanced lithium R&D, automated manufacturing, and leadership in lithium forklift and military batteries
- Both companies announced acquisition by East Penn of majority interest of Navitas on August 16th 2019
 - Navitas company structure/team stay fully intact

- Greater Power Demands Across DoD Branches
 - Sea
 - Sonobuoys
 - Small Submarines
 - Directed Energy
 - Catapults
 - Land
 - Increased onboard electronics systems
 - Silent Watch
 - Soldier Portable
 - Air
 - Small UAVs
 - Lead and NiCAD battery replacement on helicopters/planes
 - Directed Energy
 - Space
 - LEOs
 - GEOs

- High Energy Density System (300 Wh/kg+)

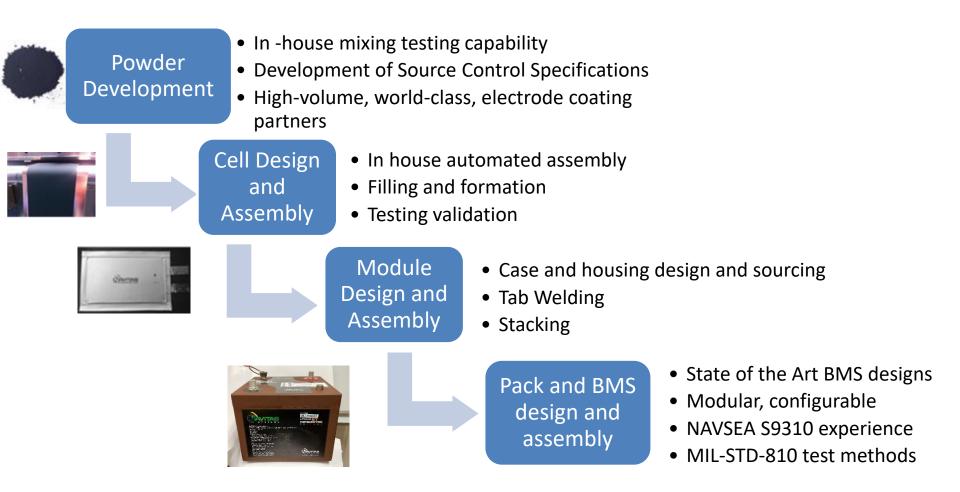
 Long run time/reduced weight
- Safe
- Fast Charging
- Wireless Charging
- Smart BMS/User Interface
- Meet MIL Stds.
- Compatible w/Existing Systems

Every ounce and every watt hour counts!

- Dependence on foreign sources presents problems^[1]
 - Configuration control
 - Potential for materials not validated to military specs to enter the supply stream
 - Surge capacity
 - War-time battery demand can increase by over 20X that of peace-time demand
 - No guarantees that global commercial sources can be diverted in time to meet demand
 - Long lead times
 - Chinese Government pushing its Li Ion manufacturing base to grow from current 55% share of global market to 90% share
 - US based companies have been denied the ability to order material due to lack of available volumes
 - Disruptive future events (e.g. "Coronavirus")

[1] Gietter, Marc D. "Viewpoint: Offshore Battery Production Poses Problems for Military". *National Defense*, 8 November, 2018. <u>https://www.nationaldefensemagazine.org/articles/2018/11/8/offshore-battery-production-poses-problems-for-military</u>

- Recommendations for Government^[2]
 - Increase investment in R&D to make state of the art technologies as affordable as possible
 - Result in increase in commercial interest and demand for these batteries
 - Support transition of these technologies into production
 - Bridge the "valley of death" between mid-TRL and production
 - Fund manufacturing technology development
 - Ensure the investment is utilized for specific DOD needs
 - Support and sustain the capacity once established
 - Reduce industry reluctance by awarding long term contracts
 - Specific college programs geared to energy storage engineering


[2] Gietter, Marc D. "Viewpoint: Offshore Battery Production Poses Problems for Military". *National Defense*, 8 November, 2018. <u>https://www.nationaldefensemagazine.org/articles/2018/11/8/offshore-battery-production-poses-problems-for-military</u>

- Recommendations for domestic battery manufacturers
 - Understand the applications deeply
 - Understand which chemistries are best optimized for a particular application
 - Test test test before committing to locked-in design
 - Have the necessary infrastructure to scale-up with quality and cost in mind
 - Interaction between chemistry and the line
 - Design production line for safety
 - Maintain vertically integrated development capabilities
 - Strong domestic and friendly country supplier partnerships

Vertically Integrated Advanced Solution Development

Powder to Pack Capability is Key

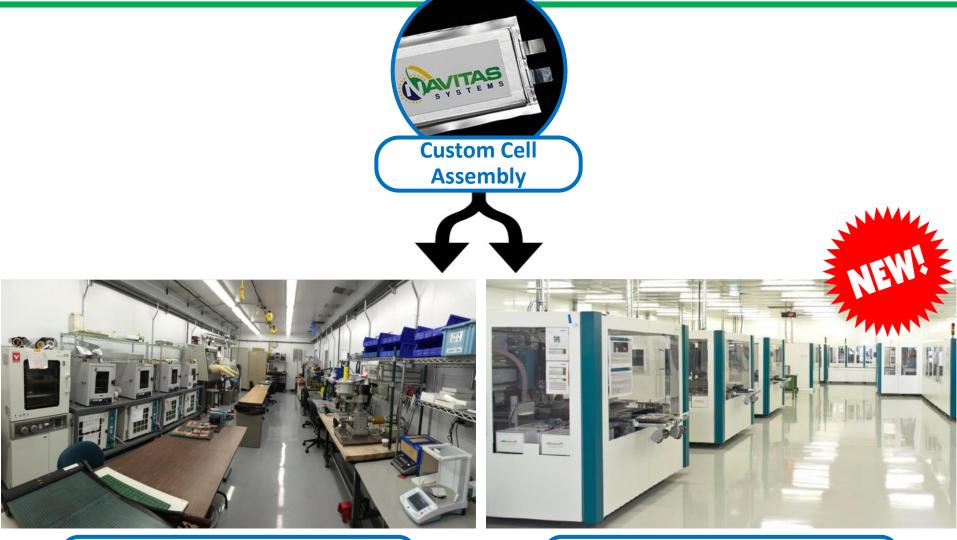
Navitas Advanced/"Beyond Lithium" Tech Development in the White Spaces

TRL 9	Mission Proven						
TRL 8	Field Tested					Rou Cell	nd Pouch
TRL 7	In-System Tested						ell/Battery
TRL 6	Production-Intent Cell		Li-S Se	parator	Silicon Anoc	e	
TRL 5	Prismatic Cell Tested	Low Cycle I	ife Fast Charge		Solid State Electrolyte		
TRL 4	SLP Cell Tested		Bullet-Re	sistant Cell			
TRL 3	Coin Cell Tested	(Deute	Lithium Anode		An de from CO2		
TRL 2	Material Synthesized	(Parth	er to Saratoga En e	ergy) Graphite	Anpue from CO2		
TRL 1	Paper Idea						

What Can Be Produced? Design Capabilities - "Horses are for Courses"

- •Standard or custom sizes and form factors
- •Turn key development, or build to customer specifications
- Prismatic and exotic geometry cells
- Pouch cells and metal can cells
- •High speed assembly of pouch cells
- •Non-commercial chemistries and designs for extreme applications

- •Standard or Advanced lithium-ion cell chemistries:
 - Graphite, Silicon, LTO anodes LFP, NMC, NCA, LCO, High V cathodes
- •High power density to high energy density cells:
 - 60 Wh/kg high power \rightarrow 300+ Wh/kg high energy



Prismatic Pouch Cell

Cell Assembly

Development and Prototyping

Automated Assembly

Navitas Systems' cell production line fills an important gap in the marketplace

- Defense customers who want to buy more than just standard battery sizes, form factors, and chemistries from large battery companies
- Defense contractors intrigued by new battery technology coming from small innovative battery companies who can't scale their innovation into meaningful production

Automated Lithium-Ion Cell Assembly

- Highly flexible in terms of size and shapes producible
- Current emplacement supports production of 500k cells/year
- Future expansion:
 - Add equipment to achieve 1.5M cells/year

Battery Pack Assembly

- BMS PCBA and control software design, validation and production
- Pack design, development and production
- Automated assembly line started up in 2019

- High speed production equipment
- NATO member country source
- Highly flexible; rapid tool change over

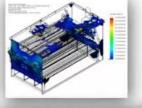
- Initial production capacity: 600,000 (4Ah) cells per year (9 MWh)
- Expandable to 1.5M cells per year (22 MWh)

Navitas Lithium-Ion Cell Assembly Line Overview

- Size range: 20×30 mm $\leftrightarrow 200 \times 200$ mm
- Form factor flexible: square, prismatic, notched, curved, or arbitrary-shape cells
- "3D" cells possible

- High volume electrode coating with partner
- ISO 9001:2015 registered
- ITAR-compliant, controlled access facility
- Expert development and support team

Serving Government Agencies; DOD Primes and Subcontractors; and Specialty Commercial, Medical, and Industrial Users



Vast Test Infrastructure

Designing to Meet MIL Standards

Example: Over 125 Tests of 6T!

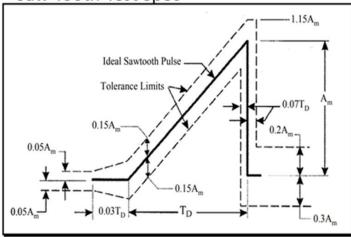
Y	2019 Ap	plications: MGV
ltem	Procedure	Test
No.	or	Description
	Standard	
11	MIL-PRF	Cell Protective Covering
	32565A	
	3.3.4.1	
12	MIL-PRF	Cell Leakage
	32565A	
	3.3.4.2	
116	MIL-PRF	Cell Safety Abuse Test
	32565A	
	3.11.1.1	
117	MIL-PRF	Cell Over-charge
	32565A	
	3.11.1.1.1	
118	MIL-PRF	Cell Short Circuit
	32565A	
	3.11.1.1.2	
119	MIL-PRF	Cell Over-Discharge
	32565A	
	3.11.1.1.3	
120	MIL-PRF	Cell Penetration
	32565A	
	3.11.1.1.4	
121	MIL-PRF	Cell Crush
	32565A	
	3.11.1.1.5	
122	MIL-PRF	Cell Leakage
	32565A	
	3.11.1.2	

137	MIL-PRF	Charger Compatibility
	32565A	
	3.13	
138	MIL-PRF	Workmanship
	32565A	
	3.14	
139	MIL-PRF	Paint, Protective Finishes
	32565A	& Coatings
	3.15.1	
140	MIL-PRF	Corrosion Resistance
	32565A	
	3.15.2	
141	MIL-PRF	Electronic Assemblies
	32565A	
	3.15.3	
142	MIL-PRF	Hazardous Materials
	32565A	
	3.15.4	
143	MIL-PRF	Chemical, Biological,
	32565A	Radiological, &
	3.15.5	Nuclear (CBRN)
144	MIL-PRF	Defects
	32565A	
	3.16	

Navitas On-site Abuse Testing



Schedule: QPL Testing start target late Q4 CY2020

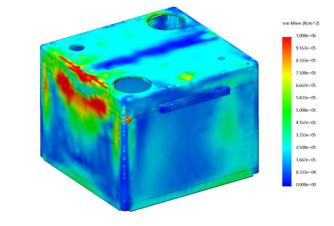
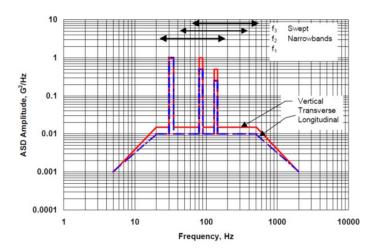


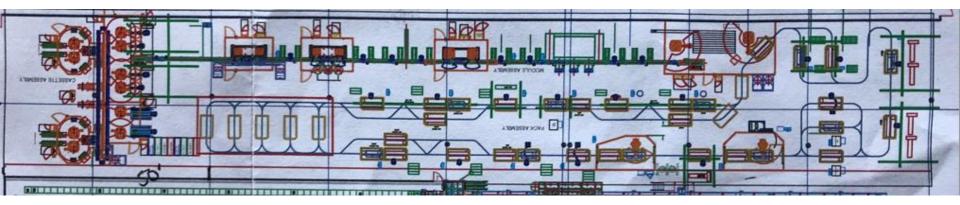
• MIL-STD-810 Test methods

Shock

Saw Tooth Test Spec

Vibration


FIGURE B-4 LIGHT VEHICLE - MATERIEL ON SPONSON OR INSTALLED IN HULL

Module Line

- Primary driver for battery development and manufacturing is consumer/commercial
 - Supplied mainly by Asia
- US Government is increasingly recognizing the need for advanced battery manufacturing in the US for military apps
- Navitas "at the tip of the spear" in serving the stringent and varied requirements of the military

- US Government needs to weigh procurement cost (Asia = cheap) vs supporting higher-cost US supply base
- US Government should consider investing in surge manufacturing capacity and large advanced purchases for stockpiling/volume production efficiencies

Our Warfighters are Counting on Us

Thank You!