

EnerSys Advanced Systems

Issues and Potential Solutions for Domestic Production of Lithium-Ion Cells

Topics

- EnerSys Advanced Systems Lithium Capacity
- Market Needs for Domestic Lithium Ion Capacity
- Manufacturing Capability and Vertical Integration
- Value of Domestic Capacity
- Cell Adoption Challenges
- Strategies for Success
- Next Steps

Space

- Launch Vehicles
- Satellites
- Manned
- Interplanetary & Landers

Aviation

- Fixed Wing & Rotary Aircraft including F16/18 & 777
- UAV's & Target Drones

Munitions

- Missiles & Smart Weapons
- Guided Bombs & Projectiles
- Electronic Fusing

Land

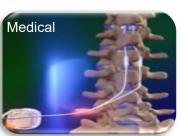
- Combat, Tactical & Unmanned Ground Vehicles
- Microgrids & Forward Operating Bases

Sea

- Submarines
- Unmanned Underwater Vehicles

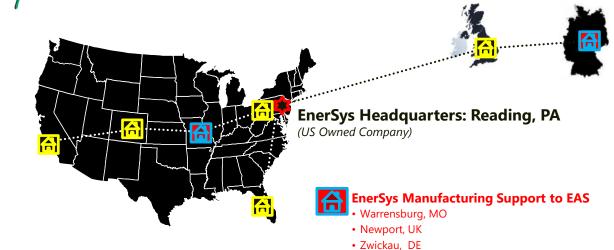
Medical

- Cochlear Implant Speech Processors
- Neromodulation


Current EAS Markets

EnerSys Advanced Systems

EnerSys Advanced Systems



- Sylmar, CA
- · Santa Clarita, CA
- · Longmont, CO
- Horsham, PA
- Tampa, FL
- · Culham Oxfordshire, UK

Four Domestic EAS Battery Engineering Locations Serving Six Markets			
Business Line	Brands	Technology	Main Manufacturing Locations
Aerospace	ABSL/Quallion	Lithium-Ion Materials, Cells & Batteries	Longmont CO, Sylmar CA, Culham UK
Medical	Quallion	Lithium-ion Cells & Batteries	Sylmar CA
Munitions	EAS, Enser	Lithium Primary/Liquid Reserve	Horsham PA, Tampa FL
Land & Sea	Hawker/Armasafe	Lead Acid (Thin Plate), NiZn	Warrensburg MO, Zwickau DE
Aviation	Hawker/Quallion	Lead Acid (Thin Plate), Ni-Cd & Lithium-ion	Warrensburg MO, Sylmar CA, Newport UK, Zwickau DE

EnerSys Lithium Solutions

Space: Large Lithium Ion Packs

- Batteries Sizes Up to 280Vdc and 300Ah (>1000 in a battery)
- Commercials Cells / Large Prismatic Cells made in Sylmar, CA / Santa Clarita, CA
 - Zero-volt lithium ion chemistry demonstrated best in class cycle life (>50,000 cycles)
- Batteries manufactured Longmont, CO and Culham, UK facilities

Munitions: Thermal and Liquid Reserve

- Reserve batteries with 30 year shelf life and 30 minutes high power operation
- Vertically integrated power production (anode, cathode, separator, heat)
- Lithium Batteries built in Tampa, FL and Horsham, PA facilities

Medical: Zero-Volt Lithium Ion Chemistry and Lithium CFx (primary)

- Zero volt chemistry is an enabling technology for implantable medical devices
 - Cochlear implant and neuromodulation devices

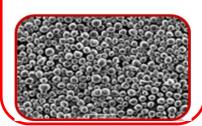
EAS Lithium Ion Capability

- **Active Negative and Positive Li-Ion Material Production**
 - **Location:** Sylmar and Santa Clarita, CA
 - Product: LCO, LNCAO and MCMB
 - Advantages: Locked chemical control to ensure consistent product with no threat of obsolescence or need for expensive re-qualification
- **Lithium-Ion Cell Production**
 - **Location:** Sylmar, CA
 - **Product:** Small prismatic wound cells, prismatic cells & cylindrical cell designs
 - Advantages: Multiple different types of form factors to meet customer battery requirements
- **Lithium-Ion Module & Battery Production**
 - Location: Sylmar, CA; Longmont, CO; Culham, UK
 - **Product:** Module and battery assembly with cylindrical and prismatic cells
 - Advantage: Flexibility in battery designs, semi-automation for module assemblies

Vertical Integration

Mitigates Supply Chain Risk

Materials


Cells

Electronics

Battery Pack

Critical anode and cathode raw materials – production and analysis

Sylmar, CA Santa Clarita, CA

High-performance custom cells in wound, stackedplate, prismatic, pouch, and 18650 formats from 1 to +100,000/year

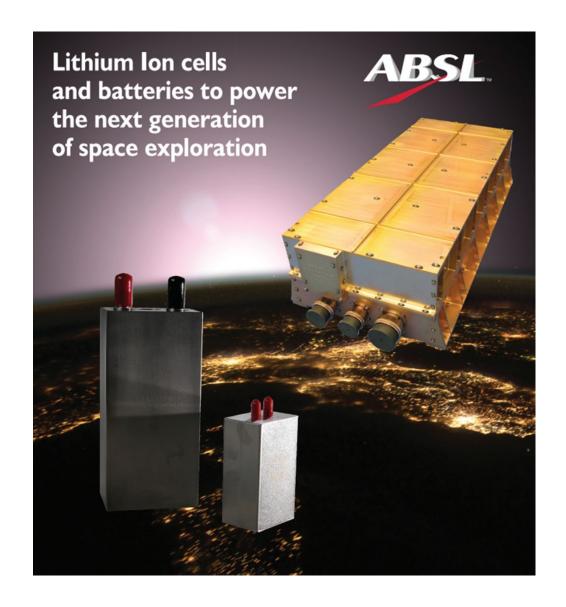
Sylmar, CA

Custom engineered electronics for battery management and system interface

Sylmar, CA

Complete cell packs engineered, manufactured and tested for any high-performance application

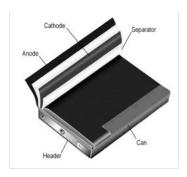
Sylmar, CA Longmont, CO Culham, UK

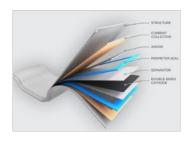

Product flexibility and supply-chain stability / Purpose Built Cells

EAS Large Format Cell

72 Amp-Hour Cell

- EnerSys has recently completed space qualification of its industry leading Large Format lithium-ion Space cell and has moved into flight production.
- We are now offering the market large cell solutions based on our heritage in small cell design.
- This 72Ah cell utilizes long life chemistry designed for Low Earth & Geosynchronous Orbit applications.
- Long life chemistry characteristics:
 - Multiple small and large cell form factors
 - Zero Volt™ technology
 - ➤ 30°C operation
 - > 80,000 cycles
 - > 20% DOD
 - 20% fade





Value of Domestic Capacity

- Guaranteed Source of Supply
 - Vertically Integrated from Materials, Cell Manufacturing and Formation
- Design for military / US DoD specific requirements
 - Example: Zero Volt, extreme cycle life (50,000+ cycles), bullet penetration, high rate, unique form factors
- Design stability
 - Control to lock in design and prevent need for cost and risk associated with re-qualification
- Reduces reliance on foreign supply and associated embargo risk (China)
- Provides additional security when handling Controlled Classified and Unclassified Data / Information
- How does the US DoD value this capability?

Cell Adoption Challenges

Costs

- Cannot compete with commercial cells on a \$/Wh basis
- DoD Prime contracts awarded on "value" and domestic supply is rarely perceived as high value
- Source of R & D investment for continual development
 - Desire for high capacity cells equivalent to commercial market
 - Little investment in ongoing R & D as compared to commercial cell manufactures
- US DoD battery designs result in the need for multiple / unique cell design and creates SKU proliferation
- **US DoD cell volume drivers (soldier power, communications)** are not willing to pay for US made cells
 - Only low volume niche markets currently see potential value domestic sourcing

Government Strategies for Success

- US DoD excellent job in investment in domestic capability
- Procurement strategy does not align US DoD, Prime Contractor and Cell Manufacturers
 - Low cost technically acceptable procurements
 - Often no requirement to use domestically produced cells
 - System Performance and best value procurements drive COTS cells
- Little investment made to ensure domestic cell performance remains relevant with quickly evolving global lithium ion market
 - Large investments in commercial market
 - Commercial requirements / developments may not align with US DoD needs
- Production capacity in place with little US DoD demand
 - Creates a continual financial strain on a company to maintain under-utilized manufacturing capacity
- Procurement at DoD level must drive domestic supply requirement in procurement strategy and determine a real "value" of US Lithium Ion capacity at all levels in supply chain

Next Steps / Summary

- Li lon cell production capability for specialty applications has been installed giving complete vertical integration from raw material to pack manufacture.
- Industry and DoD must work together to continue development of cell capability and evolve production infrastructure to keep pace with the commercial markets
- Procurement at DoD level must drive domestic supply requirement in procurement strategy and determine a real "value" of US Lithium Ion capacity at all levels in supply chain

