

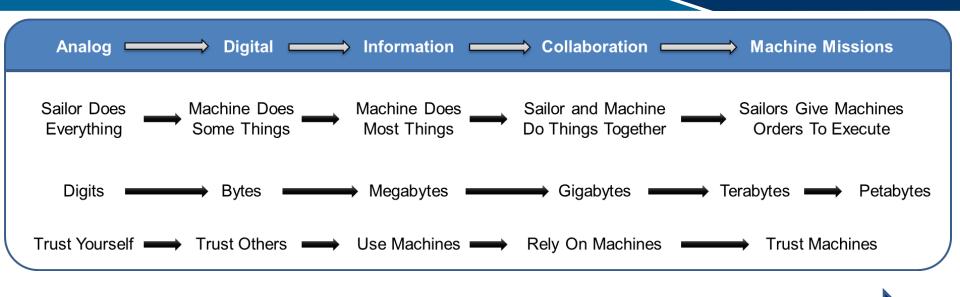
Unmanned Maritime Systems Update

11 February 2020

Mr. Eric Shields
Deputy Director, Navy Operational Energy DASN RDT&E

Presented on behalf of

CDR Jeremiah Anderson PMS406 Unmanned Maritime Systems



PEO USC Portfolio

Evolution in Military Technology

Yesterday ···· Today ···· Tomorrow

Unmanned Maritime Systems

<u>Unmanned Surface Warfare</u>

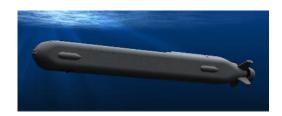
Unmanned Expeditionary Warfare

PROTOTYPES

MINE COUNTERMEASURES USV

MINEHUNTING USV

LARGE USV

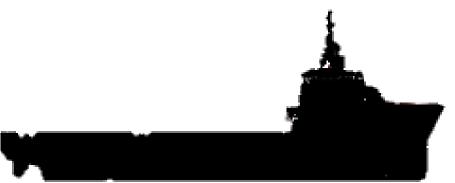

KNIFEFISH

MEDIUM USV

Unmanned Undersea Warfare

ORCA XLUUV

Unmanned Surface Warfare



Prototypes

- > Experimentation
- Research and Development
- > Operator Learning

Large USV (LUSV)

- > Strike
- > Anti Surface Warfare
- > FY24 Delivery

Medium USV (MUSV)

- > Information Operations
- > FY22 Delivery

Unmanned Expeditionary Warfare

Mine Countermesures USV (MCM USV)

- Mine Countermeasures
 - > Sweep
 - > Hunt
 - Neutralize
- > FY20 Low Rate Initial Production
- MCM Mission Package
- Littoral Combat Ship
- 48 craft inventory requirement

- Vessel of Opportunity (VOO)
- Modular MCM Force

Unmanned Expeditionary Warfare

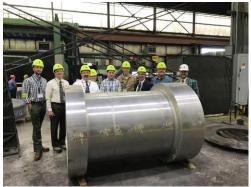
Knifefish Unmanned Undersea Vehicle

- Bottom, Buried Mine Countermeasures
- FY19 Low Rate Initial Production

- MCM Mission Package
- Littoral Combat Ship
- 30 system inventory requirement

- Vessel of Opportunity(VOO)
- Modular MCM Force

Distribution A: Approved for Public Release; Distribution Unlimited


Unmanned Undersea Warfare

- > Pier launched
- Large Payload Delivery
- > 5 units deliver FY21-22

Snakehead LDUUV

- Submarine Large Ocean Interface deployed
- > Extended Sensing
- > Large Payloads
- > FY21 Delivery

Razorback UUV

- Submarine Launch and Recovery
- > Extended Sensing
- > 9 units deliver FY19-FY20

Littoral Combat Ship Interface Control Document (ICD)

- ☐ The ICD defines the standard interfaces between the ship and the mission packages
 - Hardware oriented; mechanical and electrical requirements
 - Sea, aviation, weapon, and support type modules and stations
 - Invokes Interface Design Specifications (IDS) covering software data interface
- Requirements for total mission package loadout, e.g.,
 - Max electrical power

- Max heat rejection load

Max fresh water

- Max hazmat storage

☐ Requirements for individual modules and stations, e.g. for Support Type 1

- Module max length, width, height
- Module max mass
- Station max 440 VAC 60 Hz 3 phase power

Core Technology Standardization

Li Ion Battery Certification

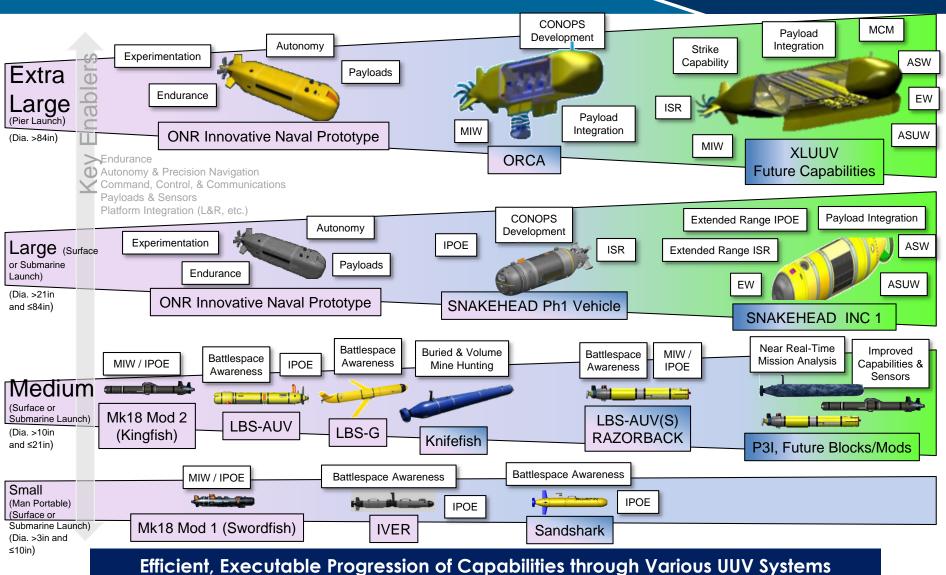
- Propagation Resistant Architecture
- > Detection
- Mitigation

Accelerating Autonomy

- Unmanned Maritime Autonomy Architecture (UMAA)
- Autonomy Lab

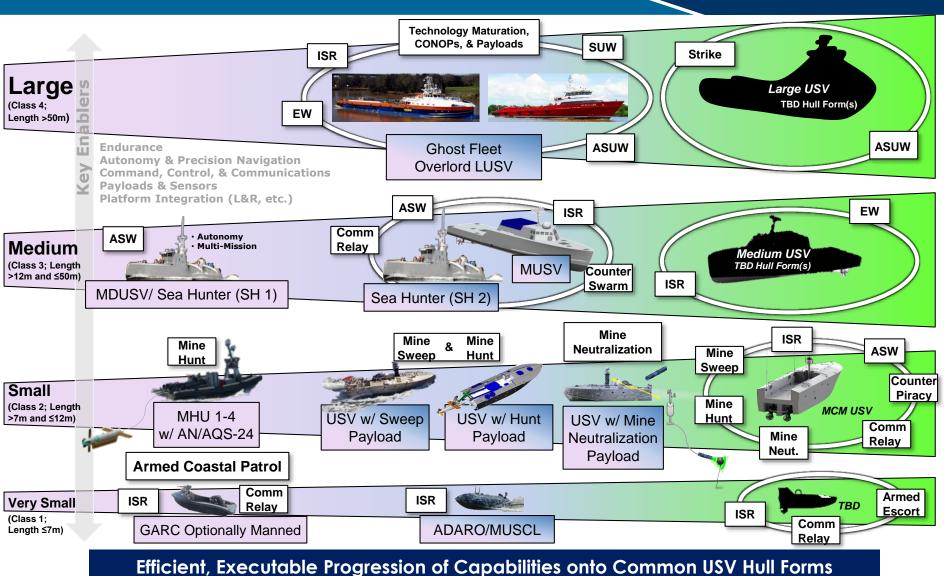
Command, Control, Communications

- Common Control System (CCS)
- Shipboard and shore based control


Payloads

- Payload Integration Group (PIG)
- > R&D payload transition

UUV Systems Vision Enhanced, Efficient Capabilities



USV Systems Vision Enhanced, Efficient Capabilities

Work to Do

- Where will we base the fleet(s) of UxVs?
- What infrastructure is needed?
- How/where will we forward deploy them?
- What transportation infrastructure is needed?
- What is the Unmanned manning scheme?
- How/where will we test them?
- How do you test endurance, reliability and autonomy?
- What policy is needed?
- How will we support them?
- What training infrastructure is required?

Department of Navy Battery Development and Safety Program

Challenges:

- Newer weapons systems require significantly more power, advanced batteries, and energy storage.
- Advanced battery safety issues aboard ship and airplanes result in significantly more expensive batteries vs industry.
- Safety issues hamper/limit deployment of critical combat systems.
- Lack of Naval battery standards, policy, ownership, enforcement across PEOs and programs is costing DON millions of dollars

Vision:

DON Established the Navy Battery Development and Safety Enterprise in October of 2019 IOT -

- Provide rapid, safe, and effective deployment of batteries and battery systems to support enhanced lethality of weapons systems.
- Reduce the cost of battery design, development, implementation, and lifecycle support through standards and enforcement.
- Coordinate advanced energy storage/battery research and development across the DON

Added Capability:

- Coordination across the SYSCOMs/PEOs/Labs in R&D, testing, etc.
- Increased certification throughput and technical review
- Bridge energy storage gaps in systems integration
- Enforcement of standards in energy storage
- Monitor performance and effectiveness of fielding of advanced battery solutions to the DON.

Expected Advantages:

- Reduce future energy storage costs to DoN by up to \$100M annually
- Improved intra-service and partner nation energy storage commonality
- Investigate Domestic Manufacturing policy advantages

Return on Investment:

- \$96K Year to date cost avoidance
 - Expanded capabilities in DT&E 2 site certifications comp/ 8 in progress

Increased deployment and speed-to-fleet of combat systems requiring advanced high energy batteries, standardizing battery technologies, and systems to reduce overall life cycle cost.

Points of Contact & Questions

CDR Jeremiah Anderson, UUV DPAPM PMS 406 jeremiah.p.anderson@navy.mil

Mr. Eric Shields, Deputy Director Navy Operational Energy eric.b.shields@navy.mil

Dr. Joe Fontaine, Department of Navy Senior Science Technical Manager Batteries joseph.fontaine@navy.mil

Mr. John Moses, Navy's Battery Development & Safety Program Manager john.a.moses@navy.mil